资源类型

期刊论文 65

会议视频 1

年份

2023 9

2022 5

2021 6

2020 3

2019 2

2018 7

2017 3

2016 7

2015 5

2014 4

2013 1

2012 4

2011 2

2009 2

2008 1

2007 2

2006 1

2001 1

展开 ︾

关键词

中药 1

五唑 1

代谢组学 1

光催化氧化 1

吸附-生物膜理论 1

小分子 1

工业应用试验 1

挥发性有机物 1

旅客机座舱 1

有效性 1

毛竹 1

活性化合物 1

活性炭 1

炸药 1

热降解 1

燃烧性能 1

生物法VOC废气净化技术 1

甲苯生化降解 1

硼砂 1

展开 ︾

检索范围:

排序: 展示方式:

Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and -nitroanilines without an external H-source

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 68-81 doi: 10.1007/s11705-022-2174-y

摘要: Benzimidazole derivatives have wide-spectrum biological activities and pharmacological effects, but remain challenging to be produced from biomass feedstocks. Here, we report a green hydrogen transfer strategy for the efficient one-pot production of benzimidazoles from a wide range of bio-alcohols and o-nitroanilines enabled by cobalt nitride species on hierarchically porous and recyclable nitrogen-doped carbon catalysts (Co/CNx-T, T denotes the pyrolysis temperature) without using an external hydrogen source and base additive. Among the tested catalysts, Co/CNx-700 exhibited superior catalytic performance, furnishing 2-substituted benzimidazoles in 65%–92% yields. Detailed mechanistic studies manifest that the coordination between Co2+ and N with appropriate electronic state on the porous nitrogen-doped carbon having structural defects, as well as the remarkable synergetic effect of Co/N dual sites contribute to the pronounced activity of Co/CNx-700, while too high pyrolysis temperature may cause the breakage of the catalyst Co–N bond to lower down its activity. Also, it is revealed that the initial dehydrogenation of bio-alcohol and the subsequent cyclodehydrogenation are closely correlated with the hydrogenation of nitro groups. The catalytic hydrogen transfer-coupling protocol opens a new avenue for the synthesis of N-heterocyclic compounds from biomass.

关键词: biomass conversion     furanic compounds     benzimidazoles     hydrogen transfer     bifunctional catalysis    

Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1618-z

摘要:

● Recent advances in the electrochemical decontamination of PFAS are reviewed.

关键词: Perfluorinated compounds     Electrochemical approach     Working mechanisms     Impacting factor     Coupled process    

Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes

Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 784-792 doi: 10.1007/s11783-015-0790-1

摘要: Co-existing organic compounds may affect the adsorption of perfluorinated compounds (PFCs) and carbon nanotubes in aquatic environments. Adsorption of perfluorooctane sulfonate (PFOS), perfluorooctane acid (PFOA), perfluorobutane sulfonate (PFBS), and perfluorohexane sulfonate (PFH S) on the pristine multi-walled carbon nanotubes (MWCNTs-Pri), carboxyl functionalized MWCNTs (MWCTNs-COOH), and hydroxyl functionalized MWCNTs (MWCNTs-OH) in the presence of humic acid, 1-naphthol, phenol, and benzoic acid was studied. Adsorption kinetics of PFOS was described well by the pseudo-second-order model and the sorption equilibrium was almost reached within 24 h. The effect of co-existing organic compounds on PFOS adsorption followed the decreasing order of humic acid>1-naphthol>benzoic acid>phenol. Adsorbed amounts of PFOS decreased significantly in the presence of co-existing or preloaded humic acid, and both adsorption energy and effective adsorption sites on the three MWCNTs decreased, resulting in the decrease of PFOS adsorption. With increasing pH, PFOS removal by three MWCNTs decreased in the presence of humic acid and phenol. The adsorbed amounts of different PFCs on the MWCNTs increased in the order of PFBS

关键词: perfluorinated compounds     carbon nanotubes     competitive adsorption     humic acid     perfluorooctane sulfonate (PFOS)    

Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China

Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 73-84 doi: 10.1007/s11783-014-0743-0

摘要: Volatile organic compounds (VOCs) and carbonyl compounds were measured both indoors and outdoors in 50 residences of Beijing in heating (December, 2011) and non-heating seasons (April/May, 2012). SUMMA canisters for VOCs and diffusive samplers for carbonyl compounds were deployed for 24 h at each site, and 94 compounds were quantified. Formaldehyde, acetone and acetaldehyde were the most abundant carbonyl compounds both indoors and outdoors with indoor median concentrations being 32.1, 21.7 and 15.3 μg·m , respectively. Ethane (17.6 μg·m ), toluene (14.4 μg·m ), propane (11.2 μg·m ), ethene (8.40 μg·m ), n-butane (6.87 μg·m ), and benzene (5.95 μg·m ) showed the high median concentrations in indoor air. Dichloromethane, p-dichlorobenzene (p-DCB) and toluene exhibited extremely high levels in some residences, which were related with a number of indoor emission sources. Moreover, isoprene, p-dichlorobenzene and carbonyls showed median indoor/outdoor (I/O) ratios larger than 3, indicating their indoor sources were prevailing. Chlorinated compounds like CFCs were mainly from outdoor sources for their I/O ratios being less than 1. In addition, indoor concentrations between two sampling seasons varied with different compounds. Carbonyl compounds and some chlorinated compounds had higher concentrations in the non-heating season, while alkanes, alkenes, aromatic compounds showed an increase in the heating season. Indoor concentration of VOCs and carbonyls were influenced by locations, interior decorations and indoor activities, however the specific sources for indoor VOCs and carbonyls could not be easily identified. The findings obtained in this study would significantly enhance our understandings on the prevalent and abundant species of VOCs as well as their concentrations and sources in Beijing residences.

关键词: indoor air     Volatile organic compounds (VOCs)     residence     carbonyl compounds    

Catalytic conversion of biomass-derived compounds to various amino acids: status and perspectives

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 817-829 doi: 10.1007/s11705-022-2254-z

摘要: Amino acids are important nitrogen-containing chemicals that have a variety of applications. Currently, fermentation is the widely employed method to produce amino acids; however, the products are mostly limited to natural amino acids in the L-configuration. Catalytic synthesis is an alternative approach for the synthesis of amino acids with different types and configurations, where the use of renewable biomass-based feedstocks is highly attractive. To date, several lignocellulose and triacylglycerol-derived intermediates, typically α-keto acids and α-hydroxyl acids, have been transformed into amino acids via the amination reaction in the presence of additional nitrogen sources (i.e., NH3·H2O). Making full use of inherent nitrogen in biomass (i.e., chitin and protein) to produce amino acids avoids the use of extra nitrogen sources and meets the requirements of green chemistry, which is attracting increasing attention. In this review, we summarize different chemical-catalytic systems for the transformation of biomass to amino acids. An outlook on the challenges and opportunities for more effective production of amino acids from biomass by catalytic methods is provided.

关键词: biomass     amino acids     chitin     nitrogen-containing compounds     lignocellulose    

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1649-1676 doi: 10.1007/s11705-023-2324-x

摘要: With the rapid development of industry, volatile organic compounds (VOCs) are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health. Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions. This review first introduces the hazards of VOCs, their treatment technologies, and summarizes the treatment mechanism issues. Next, the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded, with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications, and on the treatment of different VOCs. The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed. This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.

关键词: perovskite oxides     volatile organic compounds     catalytic combustion     reaction mechanism    

New branched benign compounds including double antibiotic scaffolds: synthesis, simulation and adsorption

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 167-182 doi: 10.1007/s11705-022-2199-2

摘要: In this study, two novel environmental benign double antibiotic norfloxacin or ciprofloxacin scaffolds included branched molecules were prepared by multi-step routes and purified by simple performance, which were used as the target compounds (TCs). Meanwhile, a single norfloxacin or ciprofloxacin skeleton based molecules were synthesized as the reference compounds (RCs). The molecular geometry optimization and material simulation computation revealed that TCs presented smaller HOMO-LUMO energy gaps and larger binding energy levels on mild steel surface than RCs. The chemical adsorption of TCs on steel surface was confirmed by X-ray photoelectron spectroscopy, which could be processed by TCs chelation with iron ions. It was shown that TCs could be self-adsorbed on steel surface, which was demonstrated by atomic force microscopy and scanning electron microscopy. The anticorrosion of the studied compounds for mild steel in HCl solution was investigated by electrochemistry analysis. The results suggested that the anticorrosion efficiency could reach 95.86% (TC1) and 97.05% (TC2) at 0.050 mmol·L−1 based on electrochemical impedance spectroscopy, which were much better than RCs (RC1, 69.23%; RC2, 74.16%). The adsorption isotherms of TCs on steel were further fitted, and a deep insight on adsorption was discussed.

关键词: branched compounds     floxacin scaffold     mild steel     anticorrosion     environmentally benign    

Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors

Chuanjia JIANG, Pengyi ZHANG

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 184-194 doi: 10.1007/s11783-011-0309-3

摘要: Carbonyl compounds in indoor air are of great concern for their adverse health effects. Between February and May, 2009, concentrations of 13 carbonyl compounds were measured in an academic building in Beijing, China. Total concentration of the detected carbonyls ranged from 20.7 to 189.1 μg·m , and among them acetone and formaldehyde were the most abundant, with mean concentrations of 26.4 and 22.6 μg·m , respectively. Average indoor concentrations of other carbonyls were below 10 μg·m . Principal component analysis identified a combined effect of common indoor carbonyl sources and ventilation on indoor carbonyl levels. Diurnal variations of the carbonyl compounds were investigated in one office room, and carbonyl concentrations tended to be lower in the daytime than at night, due to enhanced ventilation. Average concentrations of carbonyl compounds in the office room were generally higher in early May than in late February, indicating the influence of temperature. Carbonyl source emission rates from both the room and human occupants were estimated during two lectures, based on one-compartment mass balance model. The influence of human occupants on indoor carbonyl concentrations varies with environmental conditions, and may become significant in the case of a large human occupancy.

关键词: carbonyl compounds     indoor air     ventilation     human occupancy     source emission rate (SER)     principal component analysis (PCA)    

Pollution survey of carbonyl compounds in train air

LU Hao, ZHU Lizhong

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 125-128 doi: 10.1007/s11783-007-0023-3

摘要: The train is an important vehicle in China, but its air quality has important impacts on passengers health. In this work, pollution from carbonyl compounds was measured in the air of six trains. The objectives of this work were to investigate carbonyl compound levels in selected air from trains, identify their emission sources, and assess the intake of carbonyl compounds for passengers. The methods for sampling and analyzing 10 carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, crotonaldehyde, butyraldehyde, benzaldehyde, cyclohexanone, and valeraldehyde in indoor air were proposed with the sampling efficiency, recovery, and detection limit being 92% 100%, 91% 104%, and 0.26 0.82 ng/m, respectively. It was indicated that the total concentrations of carbonyl compounds were 0.159 0.2828 mg/m with the average concentration of 0.2330 mg/m. The average concentrations of formaldehyde, acetaldehyde and acetone were 0.0922, 0.0499, and 0.0580 mg/m, accounting for 42.6%, 21.4%, and 24.9% of the total concentrations of carbonyl compounds, respectively. The carbonyl compounds probably came from woodwork and cigarette smoking. The intake of carbonyl compounds for the passengers was approximately 0.043 0.076 mg/h. The carbonyl compounds in train air could be harmful to human health.

Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products

Yong YU,Laosheng WU

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 475-481 doi: 10.1007/s11783-014-0640-6

摘要: Endocrine disrupting compounds (EDCs), pharmaceuticals and personal care products (PPCPs) have attracted much attention due to widespread contamination in aquatic environment. In this study, we determined 13 EDCs and PPCPs in fish blood, bile and muscle by using gas chromatography-mass spectrometry (GC-MS). The limits of quantitation (LOQ) were in the ranges of 0.23–2.54, 0.22–2.36 ng·mL , and 0.24–2.57 ng·g dry weight (dw) for fish blood, bile and muscle, respectively. Recoveries of target compounds spiked into sample matrices and passed through the entire analytical procedure ranged from 65% to 95%, from 60% to 92% and from 62% to 91% for blood, bile and muscle, respectively. The methods were applied to the analysis of fish from a lake in California. Target compounds were relatively low in bile, and only bisphenol A (BPA) and diclofenac were measurable near the LOQ. Seven of 13 compounds were detected in blood, with total concentrations up to 39 ng·mL . Only BPA was frequently found in muscle, with mean concentration of 7.26 ng·g dw. The estimated daily intake of BPA through fish consumption for U.S. resident was significantly lower than the tolerable daily intake recommended by the European Food Safety Authority. This study showed that the exposure to the bisphenol A from fish diet is unlikely to pose a health risk.

关键词: endocrine disrupting compounds (EDCs)     pharmaceuticals and personal care products (PPCPs)     fish     bisphenol A (BPA)     risk assessment    

Phenolic compounds removal by wet air oxidation based processes

Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-017-0970-2

摘要: Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.

关键词: Wet air oxidation     Catalytic wet air oxidation     Phenolic compounds     Heterogeneous catalysts     Mechanism    

deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni–Sn intermetallic compounds

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 139-155 doi: 10.1007/s11705-022-2217-4

摘要: Porous carbon-encapsulated Ni and Ni–Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl palmitate with methanol as the hydrogen donor. During the catalyst preparation, Sn doping reduces the size of carbon spheres, and the formation of Ni–Sn intermetallic compounds restrain the graphitization, contributing to larger pore volume and pore diameter. Consequently, a more facile mass transfer occurs in carbon-encapsulated Ni–Sn intermetallic compound catalysts than in carbon-encapsulated Ni catalysts. During the in-situ hydrothermal deoxygenation, the synergism between Ni and Sn favors palmitic acid hydrogenation to a highly reactive hexadecanal that easily either decarbonylate to n-pentadecane or is hydrogenated to hexadecanol. At high reaction temperature, hexadecanol undergoes dehydrogenation–decarbonylation, generating n-pentadecane. Also, the C–C bond hydrolysis and methanation are suppressed on Ni–Sn intermetallic compounds, favorable for increasing the carbon yield and reducing the H2 consumption. The n-pentadecane and n-hexadecane yields reached 88.1% and 92.8% on carbon-encapsulated Ni3Sn2 intermetallic compound at 330 °C. After washing and H2 reduction, the carbon-encapsulated Ni3Sn2 intermetallic compound remains stable during three recycling cycles. This is ascribed to the carbon confinement that effectively suppresses the sintering and loss of metal particles under harsh hydrothermal conditions.

关键词: extended Stöber method     carbon encapsulated Ni–Sn intermetallic compounds     confinement     in-situ hydrothermal deoxygenation     hydrogenation     decarbonylation    

Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China

Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG

《环境科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 27-41 doi: 10.1007/s11783-012-0461-4

摘要: This study estimates the detailed chemical profiles of China’s anthropogenic volatile organic compounds (VOCs) emissions for the period of 2005–2020. The chemical profiles of VOCs for seven activity sectors are calculated, based on which the Photochemical Ozone Creation Potential (POCP) of VOCs for these sectors is evaluated. At the national level, the VOCs species emitted in 2005 include alkanes, alkenes and alkynes, aromatic compounds, alcohols, ketones, aldehydes, esters, ethers and halocarbons, accounting for 26.4 wt.%, 29.2 wt.%, 21.3 wt.%, 4.7 wt.%, 5.4 wt.%, 1.7 wt.%, 2.1 wt.%, 0.7 wt.% and 2.2 wt.% of total emissions, respectively. And during 2005-2020, their mass proportions would respectively grow or decrease by -6.9%, -32.7%, 7.3%, 65.3%, 34.7%, -48.6%, 108.5%, 100.5%, and 55.4%. This change would bring about a 13% reduction of POCP for national VOCs emissions in the future. Thus, although the national VOCs emissions are expected to increase by 33% over the whole period, its ozone formation potential is estimated to rise only by 14%. Large discrepancies are found in VOCs speciation emissions among provinces. Compared to western provinces, the eastern provinces with a more developed economy would emit unsaturated hydrocarbons and benzene with lower mix ratios, and aromatic compounds except benzene, oxidized hydrocarbons and halocarbons with higher mix ratios. Such differences lead to lower POCP of VOCs emitted in eastern provinces, and higher POCP of VOCs emitted in western provinces. However, due to the large VOCs emissions from Chinese eastern region, the ozone formation potential of VOCs emission in eastern provinces would be much higher than those in western provinces by about 156%–235%.

关键词: volatile organic compounds (VOCs)     chemical speciation     ozone formation     Photochemical Ozone Creation Potential (POCP)     China    

Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in

ZHANG Dong,ZHU Lizhong

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 305-315 doi: 10.1007/s11783-014-0647-z

摘要: Bioremediation of hydrophobic organic compounds (HOCs) contaminated soils involves several physicochemical and microbiological interfacial processes among the soil-water-microorganism interfaces. The participation of surfactants facilitates the mass transport of HOCs in both the physicochemical and microbiological interfaces by reducing the interfacial tension. The effects and underlying mechanisms of surfactants on the physicochemical desorption of soil-sorbed HOCs have been widely studied. This paper reviewed the progress made in understanding the effects of surfactant on microbiological interfacial transport of HOCs and the underlying mechanisms, which is vital for a better understanding and control of the mass transfer of HOCs in the biodegradation process. In summary, surfactants affect the microbiological interfacial behaviors of HOCs during three consecutive processes: the soil solution-microorganism sorption, the transmembrane process, and the intracellular metabolism. Surfactant could promote cell sorption of HOCs depending on the compatibility of surfactant hydrophile hydrophilic balance (HLB) with cell surface properties; while the dose ratio between surfactant and biologic mass (membrane lipids) determined the transmembrane processes. Although surfactants cannot easily directly affect the intracellular enzymatic metabolism of HOCs due to the steric hindrace, the presence of surfactants can indirectly enhanced the metabolism by increasing the substrate concentrations.

关键词: biodegradation     sorption     transmembrane transport     microbiological interfaces     surfactants    

Determination of polyfluoroalkyl compounds in water and suspended particulate matter in the river Elbe

Lutz AHRENS, Merle PLASSMANN, Zhiyong XIE, Ralf EBINGHAUS

《环境科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 152-170 doi: 10.1007/s11783-009-0021-8

摘要: The distribution of polyfluoroalkyl compounds (PFCs) in the dissolved and particulate phase and their discharge from the river Elbe into the North Sea were studied. The PFCs quantified included C -C perfluorinated sulfonates (PFSAs), 6∶2 fluorotelomer sulfonate (6∶2 FTS), C and C perfluorinated sulfinates (PFSiAs), C -C perfluorinated carboxylic acids (PFCAs), perfluoro-3,7-dimethyl-octanoic acid (3,7m -PFOA), perfluorooctane sulfonamide (FOSA), and n-ethyl perfluroctane sulfonamidoethanol (EtFOSE). PFCs were mostly distributed in the dissolved phase, where perfluorooctanoic acid (PFOA) dominated with 2.9-12.5 ng/L. In the suspended particulate matter FOSA and perfluorooctane sulfonate (PFOS) showed the highest concentrations (4.0 ng/L and 2.3 ng/L, respectively). The total flux of ∑PFCs from the river Elbe was estimated to be 802 kg/year for the dissolved phase and 152 kg/year for the particulate phase. This indicates that the river Elbe acts as a source of PFCs into the North Sea. However, the concentrations of perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) in the North Sea were higher than that in the river Elbe, thus an alternative source must exist for these compounds.

关键词: polyfluoroalkyl compounds (PFCs)     perfluorooctane sulfonate (PFOS)     perfluorooctanoic acid (PFOA)     surface water     water-particulate partitioning    

标题 作者 时间 类型 操作

Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and -nitroanilines without an external H-source

期刊论文

Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review

期刊论文

Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes

Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU

期刊论文

Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China

Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU

期刊论文

Catalytic conversion of biomass-derived compounds to various amino acids: status and perspectives

期刊论文

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

期刊论文

New branched benign compounds including double antibiotic scaffolds: synthesis, simulation and adsorption

期刊论文

Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors

Chuanjia JIANG, Pengyi ZHANG

期刊论文

Pollution survey of carbonyl compounds in train air

LU Hao, ZHU Lizhong

期刊论文

Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products

Yong YU,Laosheng WU

期刊论文

Phenolic compounds removal by wet air oxidation based processes

Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie

期刊论文

deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni–Sn intermetallic compounds

期刊论文

Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China

Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG

期刊论文

Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in

ZHANG Dong,ZHU Lizhong

期刊论文

Determination of polyfluoroalkyl compounds in water and suspended particulate matter in the river Elbe

Lutz AHRENS, Merle PLASSMANN, Zhiyong XIE, Ralf EBINGHAUS

期刊论文